EFFECTS OF DISTURBANCE ON KILLER WHALES

David Bain,
University of Washington

Introduction

Sources of Disturbance Mechanisms of Impact

Methods

Observation Experimentation

Results

Behavior States
Surface Active Behavior
Movement Patterns
Effects of mid-frequency sonar

Discussion

Zones of Influence
Effects on foraging efficiency
Population Scale Effects
Management Options

Sources of Disturbance

- Explosives
- Airguns
- Mid-Frequency Sonar
- LFA Sonar
- Acoustic Tomography
- Industrial
- Acoustic Harassment/Deterrent Devices

- Tourist Vessels
- Commercial Fishing
- Freight Traffic
- Aircraft
- Biological
- Physical

Mechanisms

- Collisions with vessels
- Pollution
- Noise
- Physical presence
- Stress

Noise Impact Mechanisms

- Masking
- Threshold Shifts
- Displacement
 - Excess Energy Expenditure
 - Impaired Foraging Efficiency
- Behavioral Changes
- Effects on Prey

Observations of focal whales

- land-based
- theodolite (objective and repeatable)
- measure behavior with no boats around
- compare to behavior with different levels of boat activity (number, proximity, operating practices)

Experiments on focal whales

- observe a whale for 20min without boats
- approach focal with experimental boat
- parallel the whale at 100m for 20min
- compare pre-exposure, exposure, and postexposure data

Sampling all whales, all activities

15min scans – 8yr

no focal bias

 Markov-chain modeling

 whales likelier to stop feeding after
 15min with boats present than absent

 not all activities equally vulnerable to disturbance

Effect of boats on activity budgets

Surfacing Patterns

·· whale

boat

So what?

- not all behaviors changed
- results consistent with horizontal avoidance
- swim 13% farther to get where they need to go
- that may cost energy

Williams et al. 2002a

Speed Matters

- whales used the same, but more obvious, response as to a paralleling zodiac
- response to leapfrogging at ~150m was detectable with observations on only 10 animals

(Williams et al. 2002b)

Distance Matters

Change in Probability of Feeding as a Function of Proximity to the Closest Boat

Distance Matters (Southern Residents 2003)

DISTANCE	<400	>400
Dive Time	56.2	44.2
Speed	6174	6462
Deviation	29.3	23.4
Directness	74.2	77.8
Surface Active	0.658	2.857

significantly different

non-significant but in same direction as Northern Residents

Distance Matters

Surface Active Behavior as a Function of Observing Distance (SR 2003)

Why is leapfrogging so disturbing?

- when an outboard speeds up, noise gets louder, and higher in frequency
- noise placed directly in front of whale, which causes most masking

received noise of fast boat at 500m equaled slow boat at 100m

Deep Water Path Established
Tail Slap

Distance = 47 km, 26 nm Time: 1047

No Deep Water Path
J Pod behaving normally

Distance = 47-22 km, 26-12 nm Time: 1047-1134

Deep water path established J Pod turns to move away

Distance = 22 km, 12 nm Time: 1134

Deep Water Path J Pod behaving abnormally Distance = 18-22 km, 10-12 nm Time: 1134-1314

No Deep Water Path J Pod normal (slow, spread) Time: 1314-1355

Distance = 15-22 km, 8-12 nm

Deep Water Path J Pod Abnormal

Distance = 13-15 km, 7-8 nm Time: 1355-1407

No Deep Water Path J Pod staying in shadow zone Time: 1407-1432

Distance = 4-13 km, 2-7 nm

Closest approach J Pod splitting

Distance = 3 km, 1.7 nm Time: 1432

Shoup moving away J Pod splitting, part moving away Time: 1432-1438

Sonar off

Distance = 4+ km, 2+ nm

J Pod split, moving offshore, spreading out Time: 1438-1452

Foraging tactics

Relative Prey Availability Due to Noise-Induced Threshold Changes

Effects of Population Size and Cumulative Effect Size on Population Growth

Effect of Whale Watching on Population Growth Rate (Shape Parameter = 11.3)

- negligible effects expected well below carrying capacity
- disturbance costly near carrying capacity

Correlation ($r^2=0.42$, p < .01) of Fleet Size with Population Dynamics

- Role in Decline
 - Could account for much of recent decline in Southern Residents
- Role in Recovery
 - Toxins would slow recovery in Southern Residents
 - Recovery of fish stocks could offset effects of whale watching

(Bain et al.)

Reducing the Cumulative Effect of Whale Watching

Total Quota Based on Potential Biological Removal

Limited Entry/Individual Transferable Quotas

License Fee to Cover Management Costs

Time and area closures

Changing operating practices to reduce impact

Quieter Vessels

Increasing Viewing Distance

Slowing Down Near Whales

Thanks to colleagues

Sue Kruse, Dave Briggs Janice Waite Andrew Tr Marilyn Dahlheim, Bob Otis, Rob Williams, Rich Osborne, Jodi Smith, Patrick Miller, John Ford Carlos Alvarez-Flores, Glenn VanBlaricom, and many others

Thanks for financial and logistical support

National Science Foundation University of California, Santa Cruz Stubbs Island Charters Joseph M. Long **Data General Corporation** National Marine Fisheries Service United States Geological Sur Minerals Management Service Orca Free **Orca Conservancy Orca Relief Citizens Alliance Friday Harbor Laboratories** Whale Watch Operators Association NW **NSERC** Weber Fund **WDCS** TRFF **IFAW** Bion **BC Parks**

DFO